Project

Computational methods for inverse problems formulated on stationary and moving domains

Code
3E020618
Duration
01 October 2018 → 30 September 2022
Funding
Research Foundation - Flanders (FWO)
Research disciplines
  • Natural sciences
    • Analysis
    • Applied mathematics in specific fields
    • General mathematics
    • History and foundations
    • Other mathematical sciences and statistics
Keywords
Computational methods
 
Project description

It is a common practice to reconstruct events from the past on the basis of a number of facts in the present, for example, to determine the cause of a disease based on the results of a medical examination. In science, such a problem is referred to as an inverse problem. It is easy to make a mistake when solving inverse problems. For example, symptoms that are associated with an HIV infection look like symptoms of other illnesses. It is thus impossible to tell, exclusively on the basis of symptoms, whether the problem is related to HIV or another medical condition. Therefore, the problem of determining the cause of a disease is called ill-posed, i.e. there is no unique cause (or solution). Additional medical investigations (measurements) are required to determine the correct cause.
Similar issues are encountered in the inverse problems considered in this project. First, several inverse problems with applications in mechanics are studied. Secondly, as far as we know for the very first time, inverse problems in time-varying domains will be tackled. For each problem under consideration, the most important questions are:
(1) Which additional measurement is required for the unique reconstruction of the solution?
(2) How can the solution be reconstructed?

In this project, these questions will be investigated by using advanced mathematical techniques and by developing numerical methods to calculate the required information.