Afzetten van antibacteriële nano-coatings op pinnen voor externe bot fixatie met behulp van een lagedruk niet-thermisch plasma

01-01-2017 → 31-12-2020
Fonds voor Wetenschappelijk Onderzoek - Vlaanderen (FWO)
Niet beschikbaar
Plasmapolymerisatie antibacteriële coating met ingebedde zilveren nanodeeltjes externe fixatiepennen

Within the field of orthopaedics, bone fractures with severe soft tissue damage are commonly
treated using external fixation, which is a surgical method in which metal fixation pins are driven
into a broken bone via small skin incisions. Outside the body, the inserted pins are fixed to an
external metal support which holds the bone fragments in position while the bone heals. Despite
the numerous benefits external fixation has compared to other fixation methods, it suffers from
one major disadvantage, which is pin-site infection. As the fixation pins are in direct contact with
the external skin, they can easily become the gateway to infection as numerous skin bacteria can
pass subcutaneously along the pin surface to the internal tissues. To prevent pin-site infections, a
critical step is thus to inhibit bacterial adhesion on the fixation pins. In this project, a non-thermal
plasma will be applied to deposit antibacterial nanosilver coatings on external fixation pins to
reduce pin-associated infections. Highly novel sandwich-like coatings will be deposited in which
silver nanoparticles will be enclosed between 2 plasma polymer layers to efficiently control the
release of silver ions. A full physical and chemical coating characterization will be performed as
well as in vitro and in vivo evaluations of the coating performance in reduction of pin-site
infections. If successful, a major breakthrough in plasma-assisted surface modification of
biomedical implants can be expected