-
Engineering and technology
- Photonics, light and lighting
The rampant growth of ICT applications, such as AI, is moving an increasing amount of computing resources to datacentres. Datacentres are responsible for approximately three quarters of the internet protocol data in the world. The continuous increase in data traffic and bandwidth demands are challenging the status quo of the datacentre interconnect architecture. The outstanding challenge for the next decade is finding scalable and efficient solutions to enable the bandwidth density that will be needed. Co-packaged optics (CPO) is the enabling technology to drive this shift in the computational efficiency paradigm, and the market in silicon photonics with largest forecasted CAGR in 2022-2026, with potential multi-billion dollar revenues beyond 2030. CPO is based on decreasing the distance of power-hungry electrical interfaces by co-integrating optoelectronic modules on the same interposers. In order to drive the scaling in optical edge bandwidth density, multi-wavelength laser sources for densed wavelength division multiplexing will be needed, but state of the art commercial solutions face fundamental scaling issues. Amica builds upon a breakthrough wafer-scalable, super-efficient microcomb technology to realize critical demonstrators in WDM CPO, aiming at petabit-per-second aggregate speeds in a massmanufacturable platform with unprecedented combination of channel count, efficiency, line spacing and power per line. The consortium brings a synergetic effort among an industrial leader in datacentre interconnects and high-performance computing, academic partners with complementary expertise in integrated photonics and an emerging startup that owns the intellectual property rightsfor commercialization. The team is complemented with an innovation office to lead the tech to market transition, and two associated partners who will help testing the technology for emerging markets beyond telecom.