Project

Neuromorphic Flexible Electro/chemical Interface for in-Memory Bio-Sensing and Computing

Acronym
NEFELI
Code
41E01225
Duration
01 January 2025 → 31 December 2029
Funding
European funding: framework programme
Principal investigator
Research disciplines
  • Medical and health sciences
    • Preventive medicine
Keywords
Systems engineering
Other information
 
Project description

Efficient assessment of multiple bio/chemical and electrophysiology biomarkers directly at the area of interest is an indisputable asset in the individualized healthcare. However, current implantable systems and bioelectronic technologies still face limitations in ultra-sensitive bio-sensing, address the electrical and chemical aspects fragmentally, and depend on complex setups and computationally heavy off-line processing. Conventional von Neumann architectures face limitations in efficiently handling the increasing sensor output data that can be mainly attributed to the physical separation between sensing, memory, and computing units.
Here the overall objective is to conceptualize a first-of-its-kind, miniaturized, and self-contained biosensing technology employing neuromorphic devices functioning as on-node sensors and processors (in-memory (bio)sensing and computing), in soft, flexible and bio-compatible materials and format. I will demonstrate this technology showcasing, in an in vivo animal model, a proof-of-concept implantable bio-interface that intelligently interrogates and classifies neurodegenerative disease-related bio/chemical and electrical biomarkers, coupled with active elements enabling precise adjustment of stimulation control parameters based on analog inputs. This technology holds great potential to advance our understanding and treatments of pathologies through multiplex electrical and chemical monitoring reducing the demands for power-intensive analog-to-digital conversion and computational processing. Furthermore, it paves the way for tailored interventions, laying the foundation for next-generation biomedical modulation systems.

 
 
 
Disclaimer
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency (ERCEA). Neither the European Union nor the authority can be held responsible for them.