Manage settings
MENU
About this site
In het Nederlands
Home
Researchers
Projects
Organisations
Publications
Infrastructure
Contact
Research Explorer
Your browser does not support JavaScript or JavaScript is not enabled. Without JavaScript some functions of this webapplication may be disabled or cause error messages. To enable JavaScript, please consult the manual of your browser or contact your system administrator.
Project
Towards accurate structure-property relationships in metal-organic frameworks based on advanced multiscale simulations of spatially disordered finite crystals
Information
Project Team
Organisations
Outputs and Outcomes
Publications
The operando nature of isobutene adsorbed in Zeolite H‐SSZ‐13 unraveled by machine learning potentials beyond DFT accuracy
Massimo Bocus
Sander Vandenhaute
Veronique Van Speybroeck
A1
Journal Article
in
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
2024
Machine learning potentials for metal-organic frameworks using an incremental learning approach
Sander Vandenhaute
Maarten Cools-Ceuppens
Simon DeKeyser
Toon Verstraelen
Veronique Van Speybroeck
A1
Journal Article
in
NPJ COMPUTATIONAL MATERIALS
2023
Accurately determining the phase transition temperature of CsPbI3 via random-phase approximation calculations and phase-transferable machine learning potentials
Tom Braeckevelt
Ruben Goeminne
Sander Vandenhaute
Sander Borgmans
Toon Verstraelen
Julian A. Steele
Maarten B. J. Roeffaers
Johan Hofkens
Sven Rogge
Veronique Van Speybroeck
A1
Journal Article
in
CHEMISTRY OF MATERIALS
2022