Manage settings
MENU
About this site
In het Nederlands
Home
Researchers
Projects
Organisations
Outputs & Impact
Infrastructure
Contact
Research Explorer
Your browser does not support JavaScript or JavaScript is not enabled. Without JavaScript some functions of this webapplication may be disabled or cause error messages. To enable JavaScript, please consult the manual of your browser or contact your system administrator.
Project
Interacting Particle Networks: a new deep learning approach to molecular simulation of condensed phases.
Information
Project Team
Organisations
Outputs & Impact
Publications & research data ( 15 )
Explicit electrons in machine learning potentials
Maarten Cools-Ceuppens
Joni Dambre
Toon Verstraelen
C3
Conference
2025
Nuclear quantum effects in proton transfer reactions
Aran Lamaire
Massimo Bocus
Ruben Goeminne
Sander Vandenhaute
Maarten Cools-Ceuppens
Toon Verstraelen
Veronique Van Speybroeck
C3
Conference
2023
Physical constraints on polarization and charge transport in machine-learning potentials
Maarten Cools-Ceuppens
Joni Dambre
Toon Verstraelen
C3
Conference
2023
Machine learning potentials for metal-organic frameworks using an incremental learning approach
Sander Vandenhaute
Maarten Cools-Ceuppens
Simon DeKeyser
Toon Verstraelen
Veronique Van Speybroeck
A1
Journal Article
in
NPJ COMPUTATIONAL MATERIALS
2023
Quantum free energy profiles for molecular proton transfers
Aran Lamaire
Maarten Cools-Ceuppens
Massimo Bocus
Toon Verstraelen
Veronique Van Speybroeck
A1
Journal Article
in
JOURNAL OF CHEMICAL THEORY AND COMPUTATION
2023
The influence of nuclear quantum effects on proton hopping kinetics in the H-SSZ-13 zeolite through ab initio derived machine learning potentials
Massimo Bocus
Ruben Goeminne
Aran Lamaire
Maarten Cools-Ceuppens
Toon Verstraelen
Veronique Van Speybroeck
C3
Conference
2022
Machine learning potentials for metal-organic frameworks with thermodynamic transferability
Sander Vandenhaute
Veronique Van Speybroeck
Toon Verstraelen
Maarten Cools-Ceuppens
C3
Conference
2022
A physically sound basis for polarization in machine-learning force fields
Maarten Cools-Ceuppens
Joni Dambre
Toon Verstraelen
C3
Conference
2022
Physically sound long-range interactions in machine-learning potentials
Maarten Cools-Ceuppens
Joni Dambre
Toon Verstraelen
C3
Conference
2022
Incorporating long-range interactions and polarization in machine learning potentials with explicit electrons
Maarten Cools-Ceuppens
Toon Verstraelen
Joni Dambre
Dissertation
2022
Modeling electronic response properties with an explicit-electron machine learning potential
Maarten Cools-Ceuppens
Joni Dambre
Toon Verstraelen
A1
Journal Article
in
JOURNAL OF CHEMICAL THEORY AND COMPUTATION
2022
The eMLP : a novel machine learning potential to model electronic properties with explicit-electrons
Maarten Cools-Ceuppens
Joni Dambre
Toon Verstraelen
C3
Conference
2021
IOData: A python library for reading, writing, and converting computational chemistry file formats and generating input files
Toon Verstraelen
William Adams
Leila Pujal
Alireza Tehrani
Braden D. Kelly
Luis Macaya
Fanwang Meng
Michael Richer
Raymundo Hernandez-Esparza
Xiaotian Derrick Yang
et al.
A1
Journal Article
in
JOURNAL OF COMPUTATIONAL CHEMISTRY
2021
Machine learning and materials science : ab initio screening to microstructure analysis
Michiel Larmuseau
Maarten Cools-Ceuppens
Michael Sluydts
Toon Verstraelen
Stefaan Cottenier
C3
Conference
2018
Evaluating a linear machine learning force field for aluminium
Maarten Cools-Ceuppens
Toon Verstraelen
C3
Conference
2018
Activities ( 0 )
Results
Impact narratives ( 0 )
Patents ( 0 )