Quantum enhANched phoTonic Integrated sensors For metrologY

01 January 2024 → 30 June 2027
European funding: framework programme
Research disciplines
  • Engineering and technology
    • Photonics, light and lighting
Computer and information sciences
Other information
Project description

Over the years sensors expanded their field of use from scientific exploration to consumer electronics, and their market evolved accordingly. Quantum technologies are expected to further push sensor’s performances, unlocking even more application domains, exploiting non-classical correlation of light and matter to extract the relevant information beyond the limit dictated by classical noise processes, improving performances such as sensitivity, specificity and uncertainty. The ability to produce, control and measure quantum states in transportable devices is the key to extend the sensors’ operating environment, lifetime, power consumption and costs. QUANTIFY fits perfectly this vision and the goal of Demonstrating quantum sensing beyond classical capabilities for real-world applications, in the Strategic Research Agenda of the Quantum Flagship Program. QUANTIFY objective consists in bringing photonic quantum enhanced sensors at the next level of integration developing the essential building blocks and novel quantum-enhanced techniques for future chip scale optical clocks, optically pumped magnetometers and optomechanical temperature sensors. QUANTIFY leverages different photonic platforms combined by a novel hybrid integration technique to bring the key optical and optomechanical functionalities on a single chip. To increase the clock and magnetometer performances, we introduce a photonic integrated squeezed light source, also becoming an important step for realizing a universal quantum computer based on photonics. Finally, we demonstrate a novel absolute temperature sensor with an extended detection range, from cryogenic to room temperature leveraging a nanoscale optomechanical approach coupling photonic and phononic degrees of freedom.  All the free developed sensors will be assessed using metrological protocols and national primary standards in National metrological laboratories, to foster their feature exploitation in real application for end-users.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency (HADEA). Neither the European Union nor the authority can be held responsible for them.